图解机器学习的十大算法

2024-10-22 20:27:32

1、决策树决策树是一种决策支持工具,它使用树状图或者树状模型来表示决策过程以及后续得到的结果,包括概率事件结果等。请观察下图来理解决策树的结构。从商业决策的角度来看,决策树就是通过尽可能少的是非判断问题来预测决策正确的概率。这种方法可以帮你用一种结构性的、系统性的方法来得出合理的结论。

图解机器学习的十大算法

3、最小平方回归如果你学过统计课程,也许听说过线性回归的概念。最小平方回归是求线性回归的一种方法。你可以把线性回归想成是用一条直线拟合若干个点。拟合的方法有许多种,“最小平方”的策略相当于你画一条直线,然后计算每个点到直线的垂直距离,最后把各个距离求和;最佳拟合的直线就是距离和最小的那一条。线性指的是用于拟合数据的模型,而最小平方指的是待优化的损失函数。

图解机器学习的十大算法

5、支持向量机支持向量机是一种二分类算法。在N维空间中给定两类点,支持向量机生成一个(N-1)维的超平面将这些点分为两类。举个例子,比如在纸上有两类线性可分的点。支持向量机会寻找一条直线将这两类点区分开来,并且与这些点的距离都尽可能远。利用支持向量机(结合具体应用场景做了改进)解决的大规模问题包括展示广告、人体结合部位识别、基于图像的性别检查、大规模图像分类等……

图解机器学习的十大算法

7、聚类算法聚类算法的任务是将一群物体聚成多个组,分到同一个组(簇)的物体比其它组的物体更相似。每种聚类算法都各不相同,这里列举了几种:基于类心的聚类算法基于连接的聚类算法基于密度的聚类算法概率型算法降维算法神经网络/深度学习

图解机器学习的十大算法

9、奇异值分解奇异值分解是线性代数中一种重要的矩阵分解,是矩阵分析中正规矩阵酉对角化的推广。对于给定的m*n矩阵M,可以将其分解为M = UΣV,其中U和V是m×m阶酉矩阵,Σ是半正定m×n阶对角矩阵。主成分分析其实就是一种简单的奇异值分解算法。在计算机视觉领域中,第一例人脸识别算法使用了主成分分析和奇异值分解将人脸表示为一组“特征脸(eigenfaces)”的线性组合,经过降维,然后利用简单的方法匹配候选人脸。尽管现代的方法更加精细,许多技术还是于此很相似。

图解机器学习的十大算法
猜你喜欢