解密:P2P风险风控见解

2024-11-06 16:29:41

1、风控部门职能是否明确在信贷金融领域,根据不同借款额度,往往对应的是不同的风控审批手段。从业内看,超过100万以上的借款基本魇冷钥玫采用与银行相同的借款风控手段,实地真人考察, 另外再加抵押物。而20-100万之间,可以用类似IPC的风控技术,没有抵押物,但较接近银行审核手段,不能集中化审核,容易导致审核标准不一。而 P2P从本质上讲,更多应该是专注于1-20万之间的信用无抵押借款,这是与银行、小贷和担保公司目前很难覆盖的领域,爱钱进正是选择专注于这类型的借款客户开发。在这种模式中,风险管理采用总部集中式的数据化风控模式,从而解决审核标准不统一以及审核人员快速扩张需要依赖长期经验积累的问题。在总部风控 部门设立方面,以爱钱进为例,主要分成三个部门:政策和数据分析部、风控审核部、催收部。政策和数 据分析部下面分成三个主要部分:一是政策制定团队,包括确定目标人群、设计借款产品准入政策、核批政策、反欺诈政策、催收政策等,并固化到决策引擎系统和评分卡;二是数据挖掘分析,对逾期客户进行特征分析、产品盈利分析等;三是数据建模团队,根据数据挖掘,对逾期客户特征数据进行建模分析。政策和数据分析 部的三个部门工作相互关联,工作成果是制定贷款产品政策,包括前端营销、中台审核、后台催收的各项政策制度。风控审核部主要包括初审部、终审部和稽核部,主要职责是审核判定借款人资料的真实性和有效性,结合决策引擎和评分卡等对客户做出是否核批的决定。催收部按照客户逾期时间长短,分为初催和高催,主要职责是根据催收评分卡和决策引擎,对逾期客户进行催收工作。宜保通贷平台建立了专业高效的运营及风控体系,本着严格审查、控制风险、透明公开、详实披露、高效运作、稳健经营的原则,切实保障投资人的权益。

解密:P2P风险风控见解

3、风控模型是否数据化除了坚持小额分散借款原则,用数据分析方式建立风控模型和决策引擎同样重要。小额分散最直接的体现就是借款客户数量众多,如果采用银行传统的信审模式,在还款能力、还款意愿等难以统一量度的违约风险判断中,风控成本会高至业务模式难以承受的水平,这也是很多P2P网贷平台铤而走险做大额借款的原因。可以借鉴的是,国外成熟的P2P比如LendingClub,以及都是采用信贷工厂的模式,利用风险模型的指引建立审批的决策引擎和评分卡体系,根据客户的行为特征等各方面数据来判断借款客户的违约风险。美国的专门从事信用小微贷业务的Capital One是最早利用大数据分析来判断个人借款还款概率的公司,在金融海啸中,Capital One公司也凭借其数据化风控能力得以存活并趁机壮大起来,现在已经发展成为美国第七大银行。简单点说,建立数据化风控模型并固化到决策引擎和评分卡系统,对于小额信用无抵押借款类业务的好处包括两个方面:一是决策自动化程度的提高,降低依靠人工审核造成的高成本;二是解决人工实地审核和判断所带来审核标准的不一致性问题。在国内,目前包括宜保通贷、爱钱进、拍拍贷都在积极推动数据化风控模型的建设,这也是监管层所乐于看到的。因此,除了小额分散的风控原则,P2P网贷风控的核心方法在于,通过研究分析不同个人特征数据(即大数据分析)相对应的违约率,通过非线性逻辑回归、决策树分析、神经网络建模等方法来建立数据风控模型和评分卡体系,来掌握不同个人特征对应影响到违约率的程度,并将其固化到风控审批的决策引擎和业务流程中,来指导风控审批业务的开展。

解密:P2P风险风控见解
猜你喜欢